
Realtime plane-wave software beamforming with an
iPhone

Cameron Lowell Palmer1
Department of Circulation

and Medical Imaging
Norwegian University of Science

and Technology
7491 Trondheim, Norway

Email: cameron.palmer@ntnu.no

Ole Marius Hoel Rindal1,
Sverre Holm,

and Andreas Austeng
University of Oslo

Oslo, Norway
Email: omrindal@ifi.uio.no

Abstract—This work describes the implementation of software
plane-wave beamforming performed on the GPU of an Apple
iPhone 6s and 6s Plus. The code can run on any current iOS
device that supports the Metal API. The implementation is
largely written in Swift, with some Objective-C, while the core
processing component was written in Metal, Apple’s new GPU
programming language which provides low-overhead compute
shaders for exploiting the device’s GPU. We have demonstrated
that ultrasound channel data recorded on a Verasonics Vantage
system can be wirelessly transmitted to the iPhone using a simple
networking implementation obtaining a frame rate up to 5 FPS
including serialization and transmission, and easily 60+ FPS for
on device processing depending on number of samples and output
image size.

I. INTRODUCTION

Handheld devices and ultrasound scanners with wireless
probes have in recent years received increased attention. The
main bottleneck in a system with a wireless probe is to
transfer the channel data to the device for processing. The
traditional way of dealing with this bottleneck is to do some
preprocessing, usually the first step in beamforming, on the
probe to reduce the amount of data being transmitted. We have
chosen to avoid adding this complexity in the probe, moving
all work to the device, and leaving the probe to capture,
serialize and transmit the raw channel data. When performing
plane-wave beamforming; one full image can be created from
a single transmission. These images are of a lower quality, but
multiple images can be coherently compounded into images of
high quality [1]. This allows a tradeoff between image quality
and frame rate.

This work describes the implementation of plane-wave
beamforming on an Apple iPhone 6s, managing realtime
processing of PW images streaming channel data wirelessly
from a Verasonics Vantage research scanner mimicking the
probe. The plane-wave beamforming is implemented using
Swift, Objective-C and the Metal GPU programming language.
Thus we have shown that the processing power of a commer-
cially available smartphone is enough to facilitate software
beamforming of US images. This is a proof of concept that

1The two first authors are equal contributors.

Fig. 1: Screen capture of an ultrasound image reconstructed
on an iPhone 6s plus from channel data transmitted wireless
to the phone from a Verasonics Vantage ultrasound scanner.

the probe in a handheld system may only need to contain
hardware to acquire the channel data, while the beamforming
can be done in software on commercially available devices.

II. MATERIALS AND METHODS

A. The iPhone 6s

The development target was an Apple iPhone 6s. Apple does
not release detailed technical specifications of its products,

978-1-4673-9897-8/16/$31.00 ©2016 IEEE 2016 IEEE International Ultrasonics Symposium Proceedings

however third-party sources have identified the following
components;

• Dual Core 1.85GHz 64-bit ARMv8 processor
• ARM VFP and NEON SIMD extensions
• 4 MB (victim) L3 cache
• Dual-channel 64-bit LP-DDR4 SDRAM interface (25.6

GB/s)
• Samsung 2 GB LPDDR4 RAM
• 6-core PowerVR GT7600 GPU
• Broadcom BCM4350 802.11ac WiFi.
In benchmarks performed by Ars Technica [2] the iOS

device family and Intel-based laptops have been shown to have
similar performance. In some tests the iOS device can even
outperform a laptop. Arguably the phone is a performance
competitor with more traditional computing platforms and
therefore it is reasonable to expect plane-wave beamforming to
be possible on a wide range of mobile computing devices. The
Apple 6s has a unified memory architecture, meaning that the
GPU and the CPU access the same memory. This simplifies
and speeds up the GPU processing significantly since there is
no bandwidth bottleneck between the two blocks of memory.

B. The channel data

The data is recorded on a Verasonics Vantage research
scanner [3] using the Verasonics L12-3v 192-element 0.2
mm pitch linear array. However, we are only using 128
elements since the connector is limited to 128 channels. We
are transmitting one plane-wave at a 0◦ angle using a center
frequency of 7.8 MHz and recording a 45.8 mm deep image.
The data is IQ sampled using Verasonics’ built in processing.
This means that we are only transmitting one real and one
imaginary sample for every wavelength received. Thus, when
we are imaging at 45.8 mm depth we need to transmit a total
of 128× 512 IQ samples.

1) IQ data: The concept of In-phase Quadrature (IQ) data
sampling is worth a brief explanation, for a more thorough
description see [4]. When we have a bandlimited RF-signal
centered around a center frequency, the IQ-signal can be
obtained by down-mixing the signal. Down-mixing means
multiplying the signal with a complex sinusoid signal given
by a demodulation frequency fdemod “moving down” the signal
in the frequency spectrum by using a negative demodulation
frequency. This gives an asymmetrical and thus complex
signal. This signal can then be low-pass filtered removing
the negative frequency spectrum and noise outside the desired
bandwidth. This lowpass-filtered signal can then be decimated
reducing the number of samples by a integer factor, in our case
4 compared to the default Verasonics RF-sampling frequency.
However, we need to keep in mind that the IQ-sample is
complex, thus having both a real and an imaginary part.

C. Networking

For the wireless communcation we connected the phone and
the Verasonics scanner through a dedicaded WiFi network. In
order to pass structured IQ data frames from MATLAB across
the network without implementing custom supporting code in

{
"identifier" : x,
"channel_data" : [[channel_1_samples],

[channel_2_samples],
[...],
[channel_n_samples]]

}

Fig. 2: JSON-serialized Channel Data consists of an arbitrary
numeric identifier x and the sample values for each of the
n channels. Message framing is handled by the WebSocket.
Compression greatly reduces the size of the payload.

MATLAB we used a Python script running Twisted on a PC
which acted as an HTTP POST-to-WebSocket [5] bridge. On
MATLAB we serialize the Verasonics IQ-data struct to JSON,
optionally compress it, POST it to the Python script listener
that in turn broadcasts the frame to all connected WebSocket
clients.

The native networking options for streaming structured
data in MATLAB leave the developer wanting so our first-
pass methodology [6] has the advantages of being easy to
implement and easy to work with, but is inefficient in byte size
and more importantly MATLAB’s internal JSON serialization
is slow. We also hit a bug in MATLAB 2015a for Windows
that serialized arrays of integers to doubles which caused the
size of serialized frame data to grow significantly (5MB per
frame). Uncompressed JSON serialized channel data takes
around 300kB per frame so a simple solution we used was
to compress the data, but in our limited testing calling out to
Python for this purpose slowed things down by a couple of
milliseconds per frame.

D. Pixel-based Beamforming

The flexibility of software beamforming allows us to do
so-called pixel based beamforming. This means that we can
define a set of pixels, our image, and beamform the ultrasound
data directly to the pixels. The first step in achieving this is
to calculate the time delay for every signal received on every
element to every pixel in the image.

1) Delay calculations: Given the transducer geometry, the
element width and pitch, we can get the coordinates for our
elements, xn, and then define the coordinate for every pixel
in the image (z, x). If we know the speed of sound in human
tissue we can calculate the two-way time delay [1] by

τ(z, x, xn) = (z +
√
z2 + (x− xn)2)/c. (1)

Graphically the delay calculation can be viewed as in Figure
3. We calculate each transducer element’s contribution to each
pixel in the image assuming a fixed aperture.

2) Linear Interpolation: The delay calculated in (1) can
be a non-integer sample number. To get the correct value for
every pixel we linear interpolate between the samples. Eg. if
a certain pixel has the delay 15.5 for a sample from a certain
element, we simply linear interpolate between sample 14 and
15 to get the correct value for that pixel.

xn…x6x5x4x3x2x1

Imaging Area

Transducer

z

Fig. 3: The figure shows how each element in the transducer
contributes to each pixel in the simple plane-wave case.

3) Reconstruction from IQ-data: In Section II-B1 we were
introduced to IQ-data. When reconstructing from IQ-data we
need to keep in mind that the IQ-data is the down-mixed ver-
sion of the original signal, thus we have to up-mix the signal by
doing the reverse of down-mixing and multiply the signal with
a complex sinusoid using the positive demodulation frequency
fdemod

xRF(t) = x(t)IQe
i2πfdemodt. (2)

4) Beamforming: For every pixel in the image, we now
have a vector, yyy, containing the correctly delayed signal from
every element. The next step is then to sum the correctly
delayed signal,

IDAS [z, x] =
M−1∑
m=0

wmym[z, x] = wwwHYYY [z, x]. (3)

Here M is the number of elements, ym is the correctly delayed
signal from element m, and wm is a predefined weight. When
this is done for every pixel position x and z we get the full
image.

5) Envelope detection: The up-mixed IQ-data is the one
sided analytic signal, so the envelope can easily be detected
by taking the absolute value of the complex value after the
summation of each channel contribution.

6) Logarithmic Compression and Dynamic Range: The last
step in our ultrasound image processing is to convert the
raw image amplitudes to decibel values. This is achieved by
applying

IdB = 20 · log10(|IDAS|) (4)

to each value, cutting off values that fall outside our desired
dynamic range, for example 60 dB, and normalizing the values
to the range of range of 0-255 graylevels to finally be displayed
on the screen.

E. iPhone implementation

Our beamforming algorithm was originally prototyped in
MATLAB and was subsequently ported several times as we

Fig. 4: Wireless Ultrasound Test.

worked to find the simplest implementation for iOS that
achieved the desired performance. After an initially naive port
to C and then in Swift, Apple’s new systems programming
language, we needed to move on to parallelized implementa-
tions. Several iterations of the parallelized code were worked
through, adopting the Accelerate framework (a collection of
hand tweaked high-performance libraries), and then finally
settling on the Metal shader language. An advantage of using
Metal is that since it is derived from C++ we can write, debug,
and then copy-and-paste working code into the Metal shader
file.

For this version we are only beamforming individual plane-
waves transmitted parallel to the linear probe’s surface so
we only need to calculate one set of delays for the defined
grid of image pixels. This is calculated in the initialization
of the streaming session and stored in memory, so the only
processing occurring between two image frames is performed
on the channel data captured from the ultrasound probe.

1) Channel Data Processing: The channel data is processed
in the Metal compute shader in parallel across the GPU’s
cores. Each thread of execution calculates the amplitude value
of a single pixel by summing the contribution of each channel
to the pixel. This means for an Z×X number of pixels in an
ultrasound image there are Z ×X threads each summing the
contribution of the M number of channels. If we were to add
multiple angles for plane-wave compounding we would need
to perform this calculation for each angle.

After summing the M channel contributions to the pixel we
take the decibel value and store it.

III. RESULTS

The software beamformer implemented is highly flexible but
we settled for a setup with fixed aperture imaging a 25.4 mm
wide and 45.8 mm deep image, giving us 512 IQ samples for
the 128 elements to reconstruct the image from. The results are
presented as frame rates obtained running the implementation
described in the previous sections on an iPhone 6s Plus. We
are presenting two different frame rates. One is the full cycle
frame rate including the time for acquisition on the Verasonics
Vantage scanner, serializing the data, transferring the data
wirelessly to the phone, deserializing the data and finally
processing it and displaying the final image, we will call this
the Net FPS. The other is the frame rate obtained by only
processing the data when it is stored on the phone, we will
call this the GPU FPS. We have experimentally benchmarked
this for three different numbers of pixels, using λ, λ/2 and
≈ λ/3 as the pixel spacing. The pixel spacing ≈ λ/3 was
chosen since it matches the screen width of the iPhone 6s
(375 units). The mean and standard deviation are reported in
Table I.

Net FPS GPU FPS
129x217px λ 4.5 (σ=0.5) 142.0 (σ=5.9)
258x434px λ/2 4.5 (σ=0.2) 55.5 (σ=0.7)
375x632px λ/3 4.9 (σ=3.3) 29.4 (σ=1.1)

Table I: Experimental benchmarks for three different numbers
of pixels, using λ, λ/2 and ≈ λ/3 as the pixel spacing for the
Net FPS and GPU FPS.

IV. DISCUSSION

From the values in Table I we can see that the bottleneck
in our current system is the transmission of data from the
probe, the Verasonics Vantage computer, to the phone. We
can draw this conclusion since the network FPS is stable
as the number of pixels are increased and the GPU FPS is
lowered. Using the MATLAB debugging tools we can show
that most of our time is spent serializing and compressing the
data before it is actually transmitted on the network. This tells
us that the choice of using JSON will need to be revisited
and switching to a binary protocol like Apache Thrift or
Google Protocol Buffers with less computing overhead might
significantly improve the performance of the system while
maintaining simplicity of implementation.

Regarding the image quality, see Figure 1, it is as expected
from a single plane-wave image with some visible noise
from sidelobes and especially a noisy near field. Switching
to dynamic aperture, constant f#, should clear up some of
the noise seen in the near field of the image. To significantly
improve the image quality we need to compound plane-wave
images from multiple angles. To be able to perform plane-
wave compounded imaging and maintain realtime performance

we will need to reduce or eliminate our MATLAB networking
bottlenecks. The current performance of 55 FPS with λ/2 pixel
spacing should be sufficient to allow us to trade some of our
frame rate for increased image quality.

Another interesting approach could be to use a minimum
variance approach to compound plane-wave images. It has ear-
lier been shown that by using minimum variance compounding
higher image quality is achieved using fewer plane-waves than
for conventional coherent compounding [7]. This allows us to
utilize the fact that the bottleneck is to transmit the data and
not processing it on the phone.

V. CONCLUSION

We have shown that realtime plane-wave ultrasound imag-
ing with an iPhone is feasible when processing wirelessly
streamed channel data using a Verasonics Vantage ultrasound
scanner and iPhone 6s at ≈ 5 FPS. The GPU processing frame
rate is much higher measured at 55 FPS for a 25.5 mm wide
and 45.5 mm deep image using λ/2 pixel spacing and can
be viewed as the upper-bound of this implementation. The
primary bottleneck in this implementation was identified as
the serialization of the channel data into the JSON format.

ACKNOWLEDGMENT

The authors would like to thank Thomas Hansen, senior
engineer at UiO for assisting in providing and setting up Apple
products making this research possible.

After submitting this paper we discovered a paper [8] that
demonstrated a commercial product at 2015 ICU Metz that
obtained similar results on an iPad.

REFERENCES

[1] G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, “Coherent
plane-wave compounding for very high frame rate ultrasonography and
transient elastography,” IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control, vol. 56, no. 3, pp. 489–506, 2009.

[2] A. Cunningham, “iPad Pro review: Mac-like speed with all the virtues and
restrictions of ios,” http://arstechnica.com/apple/2015/11/ipad-pro-review-
mac-like-speed-with-all-the-virtues-and-limitations-of-ios/.

[3] Verasonics, Inc.,12016 115th Ave NE, Kirkland, WA 98034,USA, “Vera-
sonics Vantage,” http://www.verasonics.com.

[4] J. Proakis and D. Manolakis, Digital Signal Processing. Pearson Prentice
Hall, 2007.

[5] “The WebSocket protocol,” https://tools.ietf.org/html/rfc6455.
[6] “Sending JSON data over WebSocket from Matlab using python Twisted

and Autobahn,” http://stackoverflow.com/questions/34357973/sending-
json-data-over-websocket-from-matlab-using-python-twisted-and-
autobahn.

[7] A. Austeng, C.-I. C. Nilsen, A. C. Jensen, S. P. Nasholm, and S. Holm,
“Coherent Plane-Wave Compounding and Minimum Variance Beamform-
ing,” in 2011 IEEE International Ultrasonics Symposium. IEEE, oct
2011.

[8] H. J. Hewener and S. H. Tretbar, “Mobile Ultrasound Plane Wave
Beamforming on iPhone or iPad using Metal- based GPU Processing,”
Physics Procedia, vol. 70, pp. 880–883, 2015.

